
Towards Efficient Scheduling of Concurrent DNN
Training and Inferencing on Accelerated Edges

Prashanthi S K †, Vinayaka Hegde and Yogesh Simmhan
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012 INDIA

Email: prashanthis@iisc.ac.in, vinayakah@iisc.ac.in, simmhan@cds.iisc.ac.in

Abstract—Edge devices are typically used to perform low-
latency DNN inferencing close to the data source. However,
with accelerated edge devices and privacy-oriented paradigms
like Federated Learning, we can increasingly use them for
DNN training too. This can require both training and inference
workloads to be run concurrently on an edge device, without
compromising on the inference latency. Here, we explore such
concurrent scheduling on edge devices, and provide initial results
demonstrating the interaction of training and inferencing on
latency and throughput.

I. INTRODUCTION AND MOTIVATION

Deep Neural Network (DNN) models are often used for

video analytics in smart city [1] and autonomous vehicle [2]

applications. With the growth in Internet of Things (IoT), edge

devices deployed close to the data source are being used to

perform DNN inferencing tasks. This shift in computation to

the edge is driven by both the bandwidth for transmitting

videos to the cloud, as well as for privacy and legal concerns.

Accelerated edge devices such as Nvidia Jetson are growing

more powerful over time and are competitive for DNN train-

ing [3]. E.g., Nvidia’s Jetson AGX Orin has 12 ARM Cortex

A78AE CPU cores, an Ampere GPU with 2048 CUDA cores

and 64 tensor cores, and 64 GB of RAM shared between

CPU and GPU. It delivers 275 TOPS of performance [4],

comparable to an RTX 3060 Ti GPU workstation.

Two classes of applications necessitate DNN training on

edge devices. The first is federated learning [5], a privacy-

focused distributed training technique on local data stored on

the edge devices, with only model weights sent to the server

for aggregation. The second is continual/lifelong learning [6],

where a model is periodically retrained on the edge over

new representative samples from real-world conditions to

prevent data drift [7]. In such scenarios, the training workloads

are not exclusively using the edge devices, and are instead

interleaved with latency-sensitive inference workload requests.

Here, inference workloads may run continuously, interspersed

with occasional training workloads that need to be run, or vice

versa. In some cases, both may be running continuously.

When both workloads arrive concurrently for execution,

running them sequentially, one after the other, is a simple

strategy that prevents interference between them. But it causes

higher wait times for one of them. Inferencing is typically

latency sensitive and cannot afford to wait till the training

epochs are complete. Also, if inferencing requests arrive

† Student author

continuously, there may not be any “gap” to schedule the

training. If the training workload is made to wait too long,

it can translate to a lower inference accuracy due to data

drift [7]. Further, serial execution under-utilizes the hardware

despite enabling intra-job pipelining [8]. Thus, concurrent

execution of these workloads is necessary to improve response

time and utilization. We also observe that the baseload is a

key component of energy use on edge accelerators [9], and

concurrent execution can reduce this as well. In this paper,

we motivate the need for concurrent execution and provide

initial results on the interaction between concurrent training

and inference workloads at various batch sizes.

II. RELATED WORK AND GAPS

Gandiva [10] is a cluster scheduler that uses intra-job

predictability to time slice GPUs efficiently across multiple

DNN training jobs, as well as migrate jobs dynamically to

improve cluster efficiency. Antman [11] is another scheduler

that uses spare resources to execute multiple jobs on a shared

GPU while minimizing interference between them. MURI [8]

packs Deep Learning training jobs on multiple resource types

in order to achieve high utilization and also reduce job com-

pletion time. However, all of these works consider server/cloud

GPUs which support GPU sharing among multiple workloads,

which is not the case on Jetson edge accelerators. Additionally,

none of these works considers inferencing workloads which

are much more lightweight compared to training as they only

involve the forward pass. While throughput is the primary

performance metric for training, latency is a key metric for

inference workloads.

Ekya [7] proposes a scheduler for continual learning (joint

inference and retraining) on edge servers. They use Nvidia’s

Multi-Process Service (MPS) [12] to manage the GPU reallo-

cation between training and inferencing processes. However,

Jetson edge accelerators do not support MPS.

Research into scheduling concurrent training and inferenc-

ing workloads on edge devices is limited. Additionally, edge

devices have unique features such as a shared RAM between

the CPU and GPU, and support for multiple power profiles

with different power/performance trade-offs and energy bud-

gets, none of which are explored by existing work.

III. PROPOSED APPROACH

We propose to interleave training and inferencing workloads

intelligently to ensure complementary resource utilization and

357

2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)

979-8-3503-0208-0/23/$31.00 ©2023 IEEE
DOI 10.1109/CCGridW59191.2023.00084

20
23

 IE
EE

/A
C

M
 2

3r
d

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

lu
st

er
, C

lo
ud

 a
nd

 In
te

rn
et

 C
om

pu
tin

g
W

or
ks

ho
ps

 (C
C

G
rid

W
) |

 9
79

-8
-3

50
3-

02
08

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

C
G

rid
W

59
19

1.
20

23
.0

00
84

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 01,2023 at 15:50:01 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600
Image

0

100

200

300

400

500

600
In
fe
re
n
c
e
L
a
te
n
c
y
(m

s
) bs16

(a) Inference latency per image, with infer-
ence batch size of 16.

0 100 200 300 400
Image

0

600

1200

1800

2400

3000

3600

4200

4800

In
fe
re
n
c
e
L
a
te
n
c
y
(m

s
) bs1

bs4

bs16

bs64

bs256

(b) Inference latency with varying inference
batch sizes (bs).

1 4 16 64 256
Inference batch size

0

2

4

6

8

#
Tr
a
in
in
g
m
in
ib
a
tc
h
e
s
/s

(#
m
b
/s
)

(c) Effect of inf batch size on train
throughput

Figure 1: Effect of batch size on training and inference throughput and latency.

avoid contention. We plan to include a wide variety of model-

s/datasets as our training and inferencing workloads. We also

plan to design tuning techniques of PyTorch parameters such

as inference batch size and the number of Dataloader workers

considering the interaction between the concurrent workloads

while also meeting the workload’s goals such as inference

latency. Finally, we plan to look at the energy aspects of

such scheduling and come up with a variant that optimizes for

energy rather than execution time. Particularly, we propose to

change the power mode of the device (which includes CPU,

GPU and memory frequencies, and the number of online CPU

cores) depending on the optimization goal, workload phase,

and resource needs.

IV. PRELIMINARY RESULTS

Setup. We run experiments on an Nvidia Jetson AGX Orin

developer kit [13] in MAXN power mode with DVFS off and

fan at max speed. Datasets are stored on the SSD, and the

page cache is flushed at the start of every experiment. We use

the jtop utility to measure CPU, GPU utilization, power, etc.

PyTorch v1.12 is used as the deep learning framework, and

we add instrumentation to measure the compute, fetch and

end-to-end times.

Workload. We consider MobileNetv3 with the GLD23k

dataset as our training workload and ResNet50 model with

the Imagenet validation dataset as our inferencing workload.

The inference images arrive at a rate of 100/s, i.e., with a gap

of 10 ms. Both these workloads run concurrently for 10 mins.

1) The inference batch size has to be chosen keeping in
mind the inference latency constraints: In Fig 1a, we report

the inference latency per image as the sum of the execution

time and the queuing time, for an inferencing batch size of

bs = 16, for the first 6 s. The figure shows a sawtooth pattern

of latency (Y axis) for each image index (X axis). The slope of

the sawtooth is due to the different queuing times for streaming

images being accumulated in a batch – the earliest image with

the most queuing time is at the top of the sawtooth while the

bottom of the sawtooth indicates the execution time for the full

batch. We see lower inference latencies of around 200 ms
for the first 200 images as this corresponds to the first ≈
2 s of the run where the concurrent training has not started

and the inference does face any interference. After the 200th

image, we see a steady-state behavior with a peak latency

within 260 ms. So the rest of the run is not plotted.

Next, we repeat this experiment with varying inference

batch sizes. As seen from Fig. 1b, bs = 1 and bs = 4 are

unstable since the batch execution time is higher than the

accumulation time for images in a batch. This results in an

unbounded increase in latency over time due to increasing

queuing times. bs = 16, 64 and 256 are stable and have a

bounded latency. However, as the batch size increases, the

execution time also increases, and this leads to higher overall

latency with maximum latencies at 0.26 s, 1.2s and 4.1s for

batch sizes of 16, 64 and 256, respectively.

2) Increasing the inference batch size also increases the
training throughput: Next, we vary the inference batch size

from 1 to 256 and report the rate at which the concurrent

mini-batch training happens. As seen from Fig 1c, the training

throughput goes up from 6 batches per second at batch size

16 to 6.38 batches per second at batch size 64 and further

to 6.65 batches per second at batch size 256. This is because

as the inference batch size increases, the amount of idle time

spent waiting for the images to accumulate for the batch also

increases, and hence the training job faces lower interference

and makes better progress. Batch size 1 is an exception, but

batch sizes 1 and 4 are not considered as they are unstable

configurations.

V. CONCLUSION

In this paper, we motivate the need for concurrent DNN

training and inferencing on accelerated edge devices. Further,

we demonstrate empirically the interaction and interference

between the two workloads under various batch sizes. In

future, we plan to develop efficient scheduling strategies

for concurrent training and inferencing on accelerated edge

devices.

358

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 01,2023 at 15:50:01 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Q. Chen, W. Wang, F. Wu, S. De, R. Wang, B. Zhang, and X. Huang, “A
survey on an emerging area: Deep learning for smart city data,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 3,
no. 5, 2019.

[2] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 2, 2020.

[3] Prashanthi S.K, A. Khochare, S. A. Kesanapalli, R. Bhope, and
Y. Simmhan, “Don’t miss the train: A case for systems research
into training on the edge,” in 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2022.

[4] NVIDIA, “Jetson orin modules and devkit,” https://www.nvidia.com/
en-in/autonomous-machines/embedded-systems/jetson-orin/, 2022.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017.

[6] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object
detectors without catastrophic forgetting,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017.

[7] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, N. Karianakis,
Y. Shu, K. Hsieh, V. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in USENIX NSDI,
2022.

[8] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022.

[9] Prashanthi S.K, S. A. Kesanapalli, and Y. Simmhan, “Characterizing
the performance of accelerated jetson edge devices for training deep
learning models,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
December 2022.

[10] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, 2018.

[11] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep learning,”
in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, 2020.

[12] NVIDIA, “Multi process service,” https://docs.nvidia.com/pdf/CUDA_
Multi_Process_Service_Overview.pdf, 2022.

[13] Nvidia., “Jetson agx orin developer kit,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/, 2022.

359

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 01,2023 at 15:50:01 UTC from IEEE Xplore. Restrictions apply.

